skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Selvaratnam, Balaranjan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neural network potentials (NNPs) trained against density functional theory (DFT) are capable of reproducing the potential energy surface at a fraction of the computational cost. However, most NNP implementations focus on energy and forces. In this work, we modified the NNP model introduced by Behler and Parrinello to predict Fermi energy, band edges, and partial density of states of Cu 2 O. Our NNP can reproduce the DFT potential energy surface and properties at a fraction of the computational cost. We used our NNP to perform molecular dynamics (MD) simulations and validated the predicted properties against DFT calculations. Our model achieved a root mean squared error of 16 meV for the energy prediction. Furthermore, we show that the standard deviation of the energies predicted by the ensemble of training snapshots can be used to estimate the uncertainty in the predictions. This allows us to switch from the NNP to DFT on-the-fly during the MD simulation to evaluate the forces when the uncertainty is high. 
    more » « less